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Abstract. Various techniques, used to optimize on-line principal component analysis, are
investigated by methods of statistical mechanics. These include local and global optimization
of node-dependent learning-rates which are shown to be very efficient in speeding up the learning
process. They are investigated further for gaining insight into the learning rates’ time-dependence,
which is then employed for devising simple practical methods to improve training performance.
Simulations demonstrate the benefit gained from using the new methods.

1. Introduction

The investigation of unsupervised on-line learning algorithms [1, 2] by means of statistical
mechanics has been shown to be a useful tool for gaining insight on the training dynamics [3].
In contrast to batch algorithms whereby all available examples are considered simultaneously
for calculating a single student parameters update, on-line updates are carried out after the
presentation of each single data point (for an overview on current on-line methods in neural
networks, see [4]). This update is proportional to a learning rateη that has to be smaller than
a critical value to make learning possible [5]. Good asymptotic performance is only possible
if the learning rate is relatively small which, at the same time, means that many update steps
are needed. Therefore, a relatively large rate is needed at the beginning and a smaller one
later on; perfect learning is only possible ifη→ 0 at late stages of the learning process. For
practical problems there is only empirical knowledge of how the learning rate has to evolve
[2]. The use of variational techniques [8, 9] enables one to calculate the optimal learning
rate evolutionη theoretically; however, these calculations require information about the task
and the input distribution which is usually unavailable. Nevertheless, insight gained from the
analysis about the optimal learning rate time-dependence may be used to improve training in
practical scenarios.

There are mainly two learning rate optimization paradigms which we will discuss here:
local optimization maximizes the cost function loss at every time-step while global optimization
seeks the maximization of the cost function loss within a predetermined time-window. Note
that towards the end of the time-window the two methods coincide and that a sufficiently long
time-window should be considered for the system to converge to optimal performance.
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2. General framework

The algorithm examined here is an on-line algorithm for principal component analysis (PCA)
based on Sanger’s rule [6]. It was already discussed in detail for constant learning ratesηi
[7]. We consider hereN -dimensional data vectorsξ taken independently from a Gaussian
data-distribution with M relevant orthonormal directions{Bi}i=1,...,M (M � N ,B>i Bj = δij ).
The correlation matrixC = 〈ξξ>〉 of this distribution has the form

C = I +
M∑
i=1

(b2
i + 2bi)BiB

>
i (1)

where{bi}Mi=1 are some positive parameters representing the specific task andI is the identity
matrix.

In the on-line-scenario a single vectorξµ is presented every time-step and a set of student
vectorsJ l ∈ RN (l = 1, 2, . . . ,M) is updated according to

J l(µ) = J l(µ− 1) +
ηl

N
x
µ

l

(
ξµ −

l∑
k=1

x
µ

k J k(µ− 1)

)
(2)

with the student projectionsxµl = J>l ξµ. The student vectors are normalized explicitly after
each time-step.

In the limit N → ∞ the evolution of the system can be described by a set of coupled
differential equations in ‘time’α = µ/N for the quantitiesRkl(µ) = J>k (µ)Bl and
Qkl(µ) = J>k (µ)J l(µ) which describe the overlaps of the student vectors with the unknown
principal components (PCs) and the mutual overlap:

dRlj
dα
= ηl〈xlyj 〉 − (ηl + η2

l /2)〈x2
l 〉Rlj − ηl

l−1∑
k=1

〈xlxk〉(Rkj −QlkRlj )

(k, l = 1, 2, . . . ,M)
dQlm

dα
= (ηl + ηm)〈xlxm〉 − ((ηl + η2

l /2)〈x2
l 〉 + (ηm + η2

m/2)〈x2
m〉)Qlm

−ηl
l−1∑
k=1

〈xlxk〉(Qkm −QklQlm)

−ηm
m−1∑
k=1

〈xmxk〉(Qlk −QkmQlm) (l 6= m).

(3)

The averages over the quantitiesxk = J>k ξ andyj = B>j ξ can be performed analytically
yielding

〈xkyj 〉 = (1 +bj )
2Rkj

〈yiyj 〉 = (1 +bj )
2δij

〈xkxl〉 = Qkl +
M∑
i

(b2
i + 2bi)RkiRli .

(4)

An investigation of this learning scenario with constant learning rates showed that the entire
process depends crucially on the learning rate. Learning rates have to be slightly different for
each student vector to break symmetries which emerge between them during training and to
avoid time-consuming plateaus [7]. The values have to be chosen between large learning rates
which are suboptimal asymptotically and small learning rates that result in prohibitively slow
learning at the transient.
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To improve learning performance and speed it is necessary to choose time-dependent
learning rates. As it was already shown that different learning rates for different nodes are
important [7] we focused on finding appropriate solutions for node-dependent learning rates
ηl(α).

3. Locally optimized learning rate

One way to calculate an optimized learning rate is to maximize the cost function loss in every
time-step (local optimization), i.e., obtainingηi(α) from a minimization of dε/dα [8]:

∂

∂ηl

dε

dα
= 0 (5)

choosing the cost function

ε = 1− 1

M

M∑
l=1

R2
ll . (6)

This function is a measure of the learning success on a scale between 1 and 0, representing poor
and optimal performance, respectively. It takes into account only the overlap of the students
with the principal component they learn, showing optimal performance when those are learnt
perfectly. It may be used to derive the locally optimal learning rate of the form

ηl(α) = −1 +
(1 +bl)2

(1 +All)
−
∑l−1

k=1(Qlk +Alk)(Rkl −QklRll)

(1 +All)Rll
(7)

with

Akl =
M∑
i=1

(b2
i + 2bi)RikRil . (8)

This learning rate depends on the data structure and the order parameters of the problem.
By choosing these optimal learning rates, the PCs are learnt very fast and high performance
can be achieved. In the following we choose a data distrbution (1) withb1 = 0.6,b2 = 0.4 and
b3 = 0.3. Figure 1 shows the evolution of the learning rates for the first three student vectors.
They all begin with a constant value which depends on the data structure and have a decaying
phase later on where the learning rate decays roughly as 1/α. In addition, the learning rates
show a ‘dip’ at the point where another student vector learns the current, most-dominant, PC
direction. This behaviour is explained by figure 2, showing the overlapsR of the students
with the PCs (upper curves) and their mutual overlapQ (lower curves): the PCs are learned
one after another; all students try to learn the largest PC first, which results in a significant
overlapQ with the first student. The orthogonalization realized by the algorithm pushes the
other students away from that direction to specialize on other directions related to the less
dominant PC. Once the direction of the PC has been identified, the related learning rate, of the
specialized student vector, starts decaying. At the same time there is a significant overlap with
the other student vectors that started learning the same direction; consequently, their learning
rates are suppressed so as to prevent them from specializing on this PC any further and to
facilitate the change in direction.

Figure 3 shows the evolution of the cost function (6). Curve (a) represents a learning
scenario with reasonably chosen constant learning rates (η1 = 0.1,η2 = 0.108 andη3 = 0.09)
balancing between training speed and asymptotic performance. The hierarchical structure of
the learning process can be noticed here as the three students learn the different PCs one after
the other. The same learning process but with locally optimized learning rates is shown in
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Figure 1. Time-dependence of the learning rates of the
first three students calculated with local optimization.

Figure 2. Overlap of the first three students with their
principal components and their mutual overlap, learning
with the the locally optimized learning rates shown above.

Figure 3. Cost functions for the detection of the first
three components in on-line PCA: the graph shows the
learning process with constant learning rates (a), with
locally optimized (b) and with globally optimized (over
the time-window shown here) (c) learning rates. Note
that intermediate values of the cost function for globally
optimized learning rates can be suboptimal.

curve (b). The PCs are learned very fast, resulting in very good asymptotic performance. The
locally optimized learning rate clearly provides improved performance with respect to every
constant rate. However, it depends on knowledge that is not available in practical situations
and can therefore only provide insight into the optimal evolution ofηl .

4. Globally optimized learning rate

As the learning process may comprise different phases, for which local optimization may
result in suboptimal global performance, we will also consider here a different approach based
on global optimization [9] of the learning rate. This has been shown to outperform local
optimization over a predetermined time-window. This method maximizes the cost function
loss over a fixed time-window:

1ε =
∫ α1

α0

dα

(
dε

dα
−
∑
i

λi(constraints)

)
(9)

where the constraints are the equations of motion (3) which have to be satisfied at every point
in time andλi are the related Lagrange multipliers. The time-windowα1−α0 has to be chosen
beforehand. Applying a variational approach with respect to the order parameters and their
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time derivatives leads to a set of differential equations for the Lagrange multipliers, from which
the globally optimized learning ratesηi can be derived. Like the locally optimized learning
rates they depend on knowlegde which is not available in practical situations. Clearly, like in
any other method, a minimal time-window is required for the learning to converge to optimal
performance.

Globally optimal parametrization was shown to be much more efficient in the case of
plateaus in the learning process where local optimization leads to indefinite trapping [9].
However, one has to keep in mind that global optimization only looks at the total loss1ε, so
that intermediate values ofε can be much worse than those obtained via local optimization.
In the case of on-line PCA it turns out that after the minimal time needed for the algorithm
to converge, the learning performance of locally and globally optimized learning are similar.
Figure 3 shows the evolution of the learning process in both cases.

One can notice that the PCs are found later than with local optimization. This can
be explained in the following way. If one component is found more accurately, the
orthogonalization process can push the other students much more efficiently out of that
direction, so that learning the next PC becomes easier. Local optimization does not rely
on future gains and therefore chooses to carry on with the specialization of student vectors,
providing better intermediate performance. The features of the globally optimized learning
rates are similar to those obtained via local optimization.

Global optimization would have been useful in the case of plateaus; these emerge in the
case of on-line PCA only for a single learning rateηi(α) = η(α) [7]. Therefore, in most cases,
global optimization will not have any advantage over local optimization. An example where
global optimization clearly outperforms local optimization is shown in [9].

Note that instead of calculating a globally optimized learning rate that leaves the learning
rule itself unchanged, one can also calculate a globally optimized learning rule [10]. In our
case this can only be calculated numerically and does not provide additional information.

5. Discussion

The use of locally optimized learning rates shows a significant improvement in the learning
performance over fixed learning rates, but it depends on quantities that are not available in
practical applications of on-line PCA. As these are not only the parameters of the data structure
bi but also the order parametersR(α) andQ(α), estimating these unknown quantities would
be extremly difficult. Nevertheless, insight gained from the theoretical study may be useful for
improving performance in practical cases. From the analysis it can be shown that the learning
rates have to be constant first and should decay like 1/α at later times, after specialization took
place. This point, where the learning rate schedule should be changed has to be set through
observables accessible in practical scenarios; typically, one could use constant learning rates
until the asymptotic regime is reached, identified through students stationarity. Our analysis
provides a refined criterion which leads to much faster learning: in figures 1 and 2 one notices
that the decaying phase for a certain student starts where the overlap to other students (usually to
one in particular) starts growing significantly. At this point the first student has already learned
the current most-dominant PC and becomes almost stationary while other students (one in
particular), which show significant correlation with the first student, should start moving to
other directions, being pushed away by the orthogonalization process. The first student has
learned enough to stabilize and to begin its ‘fine tuning’ which corresponds to the stage of a
decaying learning rate. The mutual overlaps are the only order parameters accessible in real
applications; here they provide a practical criterion for the starting point of the learning rate
decay phase, a criterion which was obtained directly from the analysis. Further improvements
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Figure 4. Simulation of on-line PCA with constant
learning rates: overlaps of the first two students with
their PCsRll and their mutual overlapQ.

Figure 5. Simulation of on-line PCA as in figure 4.
The learning rates are now chosen as time-dependent
according to the suggested rule. A comparison with
figure 4 demonstrates clearly the efficiency of this
method.

could be made by using better approxomations to the local optimization (e.g. incorporating
the ‘dip’ in the learning rates).

Attention should be paid to the number of vectorsM that has to be estimated. If the
estimated number of vectors is larger than the real one, it does not change the learning process
of the relevant directions which can be seen directly from the formulae (7) and (8). But if the
estimated number is too small then the calculated learning rates are not optimal for the given
data distribution.

6. Simulation

Simulations of an on-line principle component analysis in a 100-dimensional space with two
relevant directions were made to test the usefulness of the criterion explained above. Figure 4
displays a scenario with constant learning rates (η1 = 0.1 andη2 = 0.09), learning the same
data distribution as before. The graph shows the overlaps of the first two students with the
corresponding PCsRll and their mutual overlapQas means and standard deviations of ten runs.
The asymptotic regime is reached at the end of the timescale; at this point one would normally
commence the decay of the learning rates. In comparison, we applied the rule suggested
above, based on monitoring the overlaps between student vectors, to the same task as shown
in figure 5. As soon as the overlap between two students starts growing significantly the decay
of the first student commences; the decay for the next student commences according to similar
criteria. This corresponds directly to the observations of the optimized learning process. We
should point out that the starting value of the learning rates can be chosen higher than those
in the constant case since the decay starts very early. This demonstrates the efficiency of the
rule developed here which is applicable to practical scenarios.

7. Conclusion

A statistical mechanics approach to optimizing on-line PCA provides insight to the learning
process. The theoretically obtained time-dependent optimal learning rates depend on quantities
which are not accessible in practical applications; however, examining the optimal learning
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scenarios led to the development of a practical technique for speeding up the training process
on the basis of observables that can be easily monitored in practical scenarios. The new
method has been demonstrated on a simple problem and was shown to improve the training
performance considerably.
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